If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+X-870=0
a = 1; b = 1; c = -870;
Δ = b2-4ac
Δ = 12-4·1·(-870)
Δ = 3481
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3481}=59$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-59}{2*1}=\frac{-60}{2} =-30 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+59}{2*1}=\frac{58}{2} =29 $
| 24x=55+2x | | 8-y=4(y-3) | | -5e+3=-27 | | (15x-2)=(5x+3) | | 3a/5=21 | | x-3 = 11/2 (7-5x) | | 5a+14=9a-5 | | 2|3x-5|6x-3=1|2x-5 | | 50+6n=16.43 | | 4x=2x+600 | | 0=2x^2-288 | | 9x+29+124=180 | | 21x^2+11x-20=0 | | 122=72+x | | -13=(5)(1+4m)-2m | | 8x-3=6x+10 | | 3n+20+2n+14=-2(1-7n) | | 5/9=30/r | | Y+1=-3(x+4) | | 65=2.5x+5 | | -2x7=9 | | 29=x-4 | | m+7.9=14.1 | | m-49=-26790 | | -5x+4-3(x-1)=3x-(4x-1)+3 | | 53.4-19.9=p | | x-3 = 3 (10-4x)2 | | 86=x+18 | | -6(4x-1)=5(2x+1)-6x | | -3+3-4=b | | 687-365=d | | -10d+8=-9(d-2) |